Characterization of minimum error linear coding with sensory and neural noise

Eizaburo Doi
edoi@cns.nyu.edu
Center for Neural Science, New York University, New York, NY 10003, U.S.A.

Michael S. Lewicki
michael.lewicki@case.edu
Electrical Engineering and Computer Science Department, Case Western Reserve University, Cleveland, OH 44106, U.S.A.

Abstract: Robust coding has been proposed as a solution to the problem of minimizing decoding error in the presence of neural noise. Many real world problems, however, have degradation in the input signal, not just in neural representations. This generalized problem is more relevant to biological sensory coding where internal noise arises from limited neural precision and external noise from distortion of sensory signal such as blurring and phototransduction noise. In this note, we show that the optimal linear encoder for this problem can be decomposed exactly into two serial processes that can be optimized separately. One is Wiener filtering that optimally compensates for input degradation. The other is robust coding that best utilizes the available representational capacity for signal transmission with a noisy population of linear neurons. We also present spectral analysis of the decomposition that characterizes how the reconstruction error is minimized under different input signal spectra, types and amounts of degradation, degrees of neural precision, and neural population sizes.
1 Introduction

We address the problem of how to linearly transform N-dimensional inputs into M-dimensional representations in order to best transmit signal information through noisy Gaussian channels when the input signal is degraded. Here the degradation is modeled by additive white Gaussian noise as well as a linear distortion such as blurring. Most of the earlier studies have addressed the problem without such a degradation (for a recent review, see Palomar and Jiang, 2007, and the references therein), although it is inevitable in almost any real systems. It is therefore important to characterize and understand its impact on the optimal encoder. The main result of this note is that, under a minimum mean squared error (MMSE) objective, the optimal linear transform can be decomposed exactly into optimal de-noising/de-blurring (Wiener filtering) and optimal coding for a noisy Gaussian channel (robust coding; Lee, 1975; Lee and Petersen, 1976; Doi et al., 2007). Such decomposition was shown earlier in the context of source coding and quantization (Dobrushin and Tsybakov, 1962; Sakrison, 1968) and proven in a general case (Wolf and Ziv, 1970). Although it has been extensively studied (for a review, see Gray and Neuhoff, 1998, section V-G), a unified treatment in the context of MMSE linear coding and its characterization has not been provided. We also offer an alternative proof of the decomposition in the course of characterizing the solution.

A special case of this problem was examined previously, in which the linear transform was assumed to be convolutional, implying that the channel (or neural) dimension is equal to the input (or sensory) dimension and that individual coding units are shifted version of each other with the identical filter shape (Ruderman, 1994). Those simplifying assumptions have commonly been made in the study of optimal sensory coding, because it matches reasonably well in a certain sensory system (e.g., foveal retina) and it is analytically more tractable (Atick and Redlich, 1990; Atick et al., 1990; Atick and Redlich, 1992; van Hateren, 1992). Also,
an approximate decomposition along similar lines has been used under an information maximization objective (Atick and Redlich, 1992; Atick, 1992; Dayan and Abbott, 2001, Ch. 4). Here, we assume no such restrictions and provide a general solution with the exact decomposition, in which the channel dimension may be smaller than, equal to, or larger than the input dimension (undercomplete, complete, or overcomplete representations, respectively), and individual coding units are not restricted to have the same filter shape.

2 Problem formulation

The model system consists of three processes (Figure 1a): generation of the observed signal (eq. 1), encoding (eq. 2), and decoding (eq. 3). The observed signal \(x \in \mathbb{R}^N \) is a degraded version of the original signal \(s \in \mathbb{R}^N \) via a fixed linear transform followed by the additive white Gaussian noise (AWGN):

\[
x = Hs + \nu
\]

where \(s \) is zero mean with covariance \(\Sigma_s \), \(H \in \mathbb{R}^{N \times N} \) is a fixed linear distortion, and \(\nu \sim \mathcal{N}(0_N, \sigma_\nu^2 I_N) \) is sensory (or input) noise. Note that signal \(s \) may not necessarily be Gaussian distributed. Encoding is assumed to be a linear transform into an arbitrary dimension, and the resulting representations may be undercomplete, complete, or overcomplete:

\[
r = Wx + \delta
\]

with \(W \in \mathbb{R}^{M \times N} \) the linear encoder, \(\delta \sim \mathcal{N}(0_M, \sigma_\delta^2 I_M) \) neural (channel, or output) noise, and \(r \) the representation. Decoding is assumed to be linear:

\[
\hat{s} = Ar
\]

where \(A \in \mathbb{R}^{N \times M} \) is the linear decoder and \(\hat{s} \) is the estimate of the original signal.

The decoding error \(\epsilon \) is

\[
\epsilon = s - \hat{s}
\]
and the mean squared error (MSE) \mathcal{E} is

$$
\mathcal{E} = \langle \epsilon^T \epsilon \rangle
= \text{tr}(\epsilon \epsilon^T)
= \text{tr}(\Sigma_s) - 2\text{tr}(AWH\Sigma_s) + \text{tr}(AW\Sigma_xW^T A^T) + \sigma_\delta^2 \text{tr}(AA^T)
$$

(7)

where $\langle \cdot \rangle$ is the sample average and $\Sigma_x = HH^T + \sigma_\delta^2 I_N$ is the covariance of the observations x.

We are interested in minimizing the MSE function subject to one of the following power constraints:

$$
\text{tr}(W\Sigma_xW^T) = P
$$

(8)

$$
\text{diag}(W\Sigma_xW^T) = \frac{P}{M}
$$

(9)

where eq. 8 is to constrain the sum of the variances of filter’s outputs (referred to as the total power constraint) while eq. 9 is to constrain the individual variance (the individual power constraint; note this is a sufficient condition to satisfy the total power constraint) (Lee, 1975; Lee and Petersen, 1976).

The problem is to find W and A that minimize \mathcal{E} subject to one of the power constraints above.

3 Results

3.1 Optimal linear decoder

The linear decoder A can be expressed in terms of W and the optimization can be reduced to finding solely the optimal W. This is derived from the necessary condition of minimum MSE with respect to A:

$$
\frac{\partial \mathcal{E}}{\partial A} = 0
$$

$$
\Leftrightarrow A_{\text{opt}} = \Sigma_s H^T W^T (W\Sigma_x W^T + \sigma_\delta^2 I_M)^{-1}.
$$

(11)
Figure 1: Model diagrams. (a) The generalized problem. Both encoder W and decoder A are optimized. (b) In the first subproblem, signal degradation is caused by a fixed linear transform and AWGN. The encoder W_1 is optimized. The solution is given by Wiener filtering. (c) In the second subproblem, signal transmission is limited both by AWGN in the channel and by the limited channel dimension, and both encoder W_2 and decoder A are optimized. The solution is given by robust coding.
This result was shown previously for a special case in which \(W \) is convolutional (Ruderman, 1994).

3.2 Exact decomposition

Our main result is based on the observation that the minimum MSE can be decomposed as follows (see Wolf and Ziv, 1970, for a general case):

\[
\mathcal{E}_{\text{opt}} = (\text{Wiener filtering error}) + (\text{Robust coding error}).
\]

(12)

The “Wiener filtering error” is the theoretical error bound for a linear method that best counteracts input degradation caused by blurring and AWGN, and is achieved by the Wiener filtering (Figure 1b). The “Robust coding error” is the theoretical bound for a linear method that best utilizes noisy Gaussian channels of a limited dimension (neural population size), and is achieved by robust coding (Lee, 1975; Lee and Petersen, 1976; Doi et al., 2007) (Figure 1c). If robust coding is solved in the setting under which the input signal \(y \) is the Wiener estimate \(s^* \) (and hence the reconstruction by robust coding \(\hat{y} = \hat{s}^* \)), then it can be shown that the product of Wiener filtering and robust coding, \(W_2 W_1 \), is the optimal linear transform for the generalized problem (Figure 1).

\textit{Proof.} We analyze the problem in the whitened signal space because this simplifies the formulas. We rewrite the covariance of the observed signal \(x \) using the eigenvalue decomposition,

\[
\Sigma_x = E D_x E^T,
\]

(13)

and also rewrite the linear encoder as

\[
W = \sqrt{\frac{P}{M}} V D_x^{-\frac{1}{2}} E^T,
\]

(14)

where \(D_x^{-\frac{1}{2}} E^T \) whitens the observed signal \(x \), and \(V \) is the linear encoder with respect to the whitened signal. Note that the inverse of \(D_x \) always exists because of the non-zero input noise \(\nu \).
The first benefit of this parameterization can be seen in the constraint functions eq. 8-9 that are simplified as

\[
\text{tr}(VV^T) = M, \quad (15)
\]
\[
\text{diag}(VV^T) = 1_M. \quad (16)
\]

Also, the decoder eq. 11 is simplified as:

\[
A = \sqrt{\frac{P}{M}} \Sigma_s H^T E D_\chi \frac{1}{2} V^T \left[\frac{P}{M} VV^T + \sigma_\delta^2 I_M \right]^{-1}
\]
\[
= \sqrt{\frac{P}{M}} \Sigma_s H^T E D_\chi \frac{1}{2} V^T \left[\sigma_\delta^{-2} I_M - \frac{P}{M} \sigma_\delta^{-2} VCV^T \sigma_\delta^{-2} \right]
\]
\[
= \sqrt{\frac{P}{M}} \Sigma_s H^T E D_\chi \frac{1}{2} [I_M - \frac{P}{M} \sigma_\delta^{-2} V^T V] \sigma_\delta^{-2} V^T
\]
\[
= \sqrt{\frac{P}{M}} \Sigma_s H^T E D_\chi \frac{1}{2} [I_M - (I_M - C^{-1}) C] \sigma_\delta^{-2} V^T
\]
\[
= \sqrt{\frac{P}{M}} \Sigma_s H^T E D_\chi \frac{1}{2} C \sigma_\delta^{-2} V^T \quad (21)
\]

where

\[
C = \left(I_N + \frac{P}{M} \sigma_\delta^{-2} V^T V \right)^{-1}
\]

and we used the Woodbury matrix identity in eq. 18.

Under a minor assumption that the signal covariance \(\Sigma_s \) and the fixed linear distortion \(H \) share the same eigenvectors\(^a\), we rewrite \(\Sigma_s = E \Lambda E^T \) and \(H = E \Delta E^T \), and eq. 21 is

\(^a\) This holds in the application of image coding. Specifically, the image signal \(s \) is shift-invariant, and the linear distortion is optical blur and hence \(H \) is convolutional. In such a case, the eigenvectors are given by the Fourier basis functions. More precisely, we further assume the periodic boundary condition for both \(s \) and \(H \), and then \(\Sigma_s \) and \(H \) are circulant in addition to Toeplitz. The eigenvector matrix of circulant Toeplitz matrix is the DFT matrix. Alternatively, we can employ an approximation for a non-circulant Toeplitz matrix without assuming periodic boundary condition, which is called circulant approximation (Gray, 2006).
further simplified as:

$$ A = \sqrt{\frac{P}{M}} \sigma_{\delta}^{-2} E \Lambda \Delta D_x^{-\frac{3}{2}} CV^T. \quad (23) $$

By substituting eq. 14 and eq. 21 in eq. 7, the MSE can be expressed in terms of V:

$$ \mathcal{E} = \text{tr}(A) - 2 \left[\text{tr}(A^2 \Delta^2 D_x^{-1}) - \text{tr}\{A^2 \Delta^2 D_x^{-1} C\} \right] $$

$$ + \text{tr}(A^2 \Delta^2 D_x^{-1}) - 2 \text{tr}\{A^2 \Delta^2 D_x^{-1} C\} + \text{tr}\{A^2 \Delta^2 D_x^{-1} C^2\} $$

$$ + \text{tr}\{A^2 \Delta^2 D_x^{-1} C\} - \text{tr}\{A^2 \Delta^2 D_x^{-1} C^2\} $$

$$ = \text{tr}(A) - \text{tr}(A^2 \Delta^2 D_x^{-1}) + \text{tr}\{A^2 \Delta^2 D_x^{-1} C\}. \quad (24) $$

$$ = \text{tr}(A) - \text{tr}(A^2 \Delta^2 D_x^{-1}) + \text{tr}\{A^2 \Delta^2 D_x^{-1} C\}. \quad (25) $$

Thus we have arrived at the exact decomposition given in eq. 12. The first term in eq. 25 is the signal variance, and the second term is the (negative) variance of the best linear reconstruction subject to the input degradation (or the variance of the Wiener estimate) (Gonzalez and Woods, 2002). Therefore, the first two terms collectively correspond to the MMSE subject to the input degradation. The third term correspond to the MSE function with V subject to AWGN in M-dimensional channel whose N-dimensional input spectrum $\tilde{D}_x = \Lambda^2 \Delta^2 D_x^{-1}$ (Lee, 1975; Lee and Petersen, 1976; Doi et al., 2007). The optimal V that satisfies the total or the individual power constraint is ready to be derived from these earlier studies.

b The corresponding MMSE problem in the original signal space (before whitening) is to find a linear transform $\tilde{W} = \sqrt{\frac{M}{P}} V \tilde{D}_x^{-\frac{3}{2}} E^T$ where $\tilde{\Sigma}_x = E \tilde{D}_x E^T$ is the covariance of input signal. The power constraints are respectively

$$ \text{tr}(\tilde{W} \tilde{\Sigma}_x \tilde{W}^T) = P \Rightarrow \text{tr}(VV^T) = M, \quad (26) $$

$$ \text{diag}(\tilde{W} \tilde{\Sigma}_x \tilde{W}^T) = \frac{P}{M} 1_M \Rightarrow \text{diag}(VV^T) = 1_M, \quad (27) $$

namely, those robust coding solutions satisfy the same power constraints in the generalized problem.
It implies that the optimal filtering in the MSE sense is given by de-noising and de-blurring of the input signal, followed by the optimal coding of this cleaned signal where the signal transmission is restricted by channel noise and the limited channel dimension. The first filtering is separable from the second, implying that input degradation cannot be compensated by increasing the representational capacity of the channel, for example, by decreasing channel noise or by increasing the channel dimension.

In summary, the MMSE linear transform can be obtained by the following steps:

1. Find the Wiener filter given the input signal spectrum, linear distortion, and the amplitude of input noise: \(W_{\text{wiener}} \)

2. Find the robust coding solution given the Wiener estimate spectrum, the amplitude of channel noise, and the channel dimension: \(W_{\text{robust}} \)

3. The optimal linear transform for the generalized problem is: \(W_{\text{mmse}} = W_{\text{robust}} W_{\text{wiener}} \)

3.3 Spectral characterization

The exact decomposition into Wiener filtering and robust coding allows us to gain insight into how the reconstruction error is minimized, by analyzing how the power spectrum (eigenvalues) of a generic signal is transformed through the two serial processes.

The first process, Wiener filtering, can be expressed by

\[
W_{\text{wiener}} = E\Delta E^{-1}E^T
\]

(28)

where \(D_x = \Delta^2 + \sigma^2 \Omega \). Recall the spectrum of the Wiener estimate \(s^* \) is \(\Delta^2 \Omega^{-1} \equiv \Lambda^* = \text{diag}(\lambda_1^*, \ldots, \lambda_N^*) \), and how the original signal is restored against linear distortion and input noise is well understood.

The second process, robust coding, is given by

\[
W_{\text{robust}} = P \left[\sqrt{\frac{P}{M}} \Omega^{-\frac{1}{2}} \right] E^T
\]

(29)
where \(\mathbf{P} \) is some \(M \)-dimensional orthogonal matrix\(^c\) and \(\left[\sqrt{\frac{P}{M}} \mathbf{\Omega} \mathbf{A}^{s-\frac{1}{2}} \right] \) is the gain of input signal in the eigenspace (note the input signal of this second process, \(\mathbf{y} = \mathbf{s}^* \), is represented in the signal’s eigenspace by \(\mathbf{E}^T \) in eq. 29). The \(i \)-th element of this gain (squared, for clarity) is given by

\[
\frac{\mathbf{P}}{M} \omega_i^2 \frac{1}{\lambda_i^*} = \begin{cases}
\left(\frac{1}{\sqrt{l_0}} - \frac{1}{\sqrt{\lambda_i^*}} \right) \frac{\sigma_i^2}{\sqrt{\lambda_i^*}}, & \text{if } i = 1 \sim K, \\
0, & \text{otherwise,}
\end{cases}
\]

where

\[
l_0 = \left[\frac{1}{K \sigma_i^2} + \frac{1}{K} \sum_{i=1}^{K} \sqrt{\lambda_i^*} \right]^2
\]

is the threshold and only those signal components whose eigenvalues are greater than this value are encoded with robust coding, and \(K \) is the total number of such components (without loss of generality, we assume \(\lambda_i^* \) is sorted in descending order; see Lee, 1975; Lee and Petersen, 1976, for derivation). \(K \) needs to be computed numerically.

Our analysis is reduced to that in Ruderman (1994) when the linear encoder \(\mathbf{W} \) is restricted to be convolutional, namely, when the eigenvector matrix \(\mathbf{E} \) is the Fourier basis and the \(M \)-dimensional orthogonal matrix \(\mathbf{P} \) is also given by the same Fourier basis \(\mathbf{E} \) (note this is \(N \)-dimensional).

Unlike Wiener filtering, robust coding is much less widely known and its characteristics have not been fully examined except for one- or two-dimensional signal problems (Doi

\(^c\) Under the total power constraint, the robust coding solution is unique up to an orthogonal matrix \(\mathbf{P} \) (eq. 29). Note that \(\mathbf{P} \) is cancelled out from eq. 8. Under the individual power constraint, \(\mathbf{P} \) acts to distribute the total power evenly over the coding units. This problem is known as the inverse eigenvalue problem (Chu and Golub, 2005) and the existence of such an orthogonal matrix and an algorithm to find it were shown in (Lee, 1975; Lee and Petersen, 1976).
et al., 2007). Next we illustrate four major characteristics of robust coding for a general
N-dimensional signal.

(i) The threshold l_0 defines which input signal dimensions are encoded. Figure 2a shows
signal’s eigenvalues (power spectrum), and those components that exceed l_0 are en-
coded and the rest are discarded in robust coding. The corresponding “critical” index
(or frequency), K, is indicated with the gray vertical line in all panels in Figure 2.

From eq. 31, we observe the following:

- The threshold l_0 gets lower (and hence the critical frequency K goes higher;
 Figure 2a) if the larger total power P (eq. 8) is available in the neural population.
The total power can be increased by increasing the power available for individual
neurons, or by increasing the neural population size while the individual neural
power is fixed, or both. Note that overcompleteness in our model is useful to
minimize MSE because it could increase the total power. If the overcompleteness
is increased while the total power is fixed, then the MMSE will not change. (This
could still be beneficial for the other reason, for example, if a large number of
low power coding units is more economical than small number of high power
coding units.) The changes of encoder and the critical frequency by doubling the
population size at a fixed individual neural power is illustrated in Figure 2b, and
the resulting change of the error ratio is shown in Figure 2f.
- The threshold gets lower if channel noise σ_δ^2 is smaller. (Note
 $\frac{P}{K\sigma_\delta^2}$ in eq. 31 is the effective SNR where K is the dimension of subspace represented by the
 neural population; it is different from the apparent, average SNR of the neural
 population, which is given by $\frac{P}{M\sigma_\delta^2}$ where M is the neural population size.)
- The thresholding depends on the anisotropy (or distribution) of input spectrum
 λ_i^*, and there is no thresholding when it is isotropic. This was thoroughly analyzed
for the two-dimensional signal (Doi et al., 2007).

(ii) The squared gain of the input signal (eq. 30, illustrated in Figure 2b) has the maximum at the frequency L whose eigenvalue is $\lambda^*_L = 4l_0$ (Figure 2a). (This can be shown by the first- and the second-order derivatives of eq. 30a with respect to λ^*_i.) It is interesting that the band-pass characteristic emerges under the MMSE objective, with $1/f^2$ signal. In contrast, under the information maximization objective, the optimal filtering is whitening (Atick, 1992; Cover and Thomas, 2006), and hence it is high-pass filtering with $1/f^2$ signal (its squared gain is proportional to f^2).

(iii) The power spectrum of the noisy representation r (given by the product of the squared gain of robust coding, eq. 30, and the power spectrum of signal, λ^*_i, plus channel noise spectrum, σ^2_δ) is proportional to the square-root of the signal spectrum if the signal is beyond the threshold; otherwise it is identical to the noise spectrum, i.e., those components are all noise (Figure 2c):

$$\frac{P}{M} \omega^2_i + \sigma^2_\delta = \begin{cases} \frac{\sigma^2_\delta}{\sqrt{l_0}} \sqrt{\lambda^*_i} & \text{if } i = 1 \sim K, \\ \sigma^2_\delta & \text{otherwise.} \end{cases} \quad (32a)$$

This may be seen as an intermediate between the original signal λ^*_i and a flat spectrum generated by whitening. This “half-whitening” is a distinct feature of robust coding.

(iv) The reconstruction is more precise for those components whose power is larger. The multiplication of the noisy representation (Figure 2c) and the decoder (2d) yields the reconstructed signal (2e). The reconstruction error (also shown in Figure 2e) is:

$$\begin{cases} \sqrt{l_0 \lambda^*_i} & \text{if } i = 1 \sim K, \\ \lambda^*_i & \text{otherwise,} \end{cases} \quad (33a)$$

implying that the ratio of the error at each component i is (Figure 2f):

$$\frac{\text{(error variance)}}{\text{(data variance)}} = \begin{cases} \sqrt{\frac{l_0}{\lambda^*_i}} & \text{if } i = 1 \sim K, \\ 1 & \text{otherwise.} \end{cases} \quad (34a)$$
This results from the optimal allocation of a limited representational resource: more resource is allocated to those signal components whose power is higher. In contrast, the information maximization objective leads to whitening instead of robust coding, in which the reconstruction spectrum is proportional to the input spectrum and the error ratio is constant for any signal component, even if the power spectrum of the signal is not uniform (Doi and Lewicki, 2005). This may be interpreted as allocating the representational resources evenly over the signal components even if their signal strengths are different. The suboptimality of whitening in the MMSE sense has been observed in the literature (Bethge, 2006; Doi et al., 2007; Eichhorn et al., 2009), and our analysis provides an explanation as to how that is the case.

4 Conclusion

We investigated how to optimally organize a population of noisy neurons in order to represent noisy input signals. Our analysis provides an exact solution and its characterization under an idealized setting, which is applicable in a wide range of conditions. For example, the degradation of input signals can model optical blur and additive noise in image formation, and could be set from measurements in a specific system. Similarly, the neural (channel) noise and population size can also be determined for the system of interest. This provides a way to predict the optimal code for a wide variety of biological systems. The application need not be restricted to vision, or even to biological systems, and could be used to design optimal signal processors.

Acknowledgment

We would like to thank the reviewer for pointing out the prior study on the decomposition in a general case (Wolf and Ziv, 1970).
Figure 2: Spectral analysis of robust coding. (a) Input signal y (see Figure 1 for notation). In this example, its spectrum λ_i^* is given by $1/f^2$ as in photographic images of natural scenes (i.e., $\lambda_i^* = 1/i^2$ by equating the index i with the frequency f). The input and output dimensions are $N = 100$, and $M = 100$, respectively (hence, a complete representation), and the variance of channel noise, σ^2_δ, is set so that the average SNR of the channel $\frac{P}{M\sigma^2_\delta} = 1$. Two points on the horizontal axis indicates the critical frequency, K (closed circle), and the maximizer of the encoder spectrum, L (open circle), respectively (see text). (b) Encoder W_{robust}. We show the encoder spectra with $M = 100$ (black curve) and also with $M = 200$ (gray curve; this is a $2\times$ overcomplete representation), with the corresponding critical frequency, K and K', respectively. Maximizer L is shown only for the complete representation. (c) Noisy representation r. The encoder output $W_{robust} s$ and channel noise δ are also shown. (d) Decoder A. (e) Reconstruction \hat{y}. This is given by the multiplication of noisy representation (c) and decoder (d). (f) The error ratio for each frequency, as defined in eq. 34. With the $1/f^2$ power spectrum of input signal, the ratio before thresholding (eq. 34a) is given by $\sqrt{T_0}f$ (note this plot is in the linear axes to clarify the linearity). As in (b), we illustrate two cases: complete (black) and $2\times$ overcomplete (gray) representations.
References

